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1 Introduction

Decision makers, such as judges, make crucial choices regarding judicial bail decisions on a daily
basis. Such decisions typically involve careful assessment of the subject’s (or defendant’s) condition,
analyzing the costs associated with the possible actions, and the nature of the consequent outcomes.
Further, there might be costs associated with the assessment of the subject’s condition itself. For
instance, a judge deciding if a defendant should be granted bail studies the criminal records of
the defendant, and enquires for additional information (e.g., defendant’s personal life or economic
status) if needed. She then recommends a course of action (or treatment)1 that trades off the risk with
granting bail to the defendant (the defendant may commit a new crime when out on bail) with the
cost of denying bail (adverse effects on defendant, or defendant’s family, cost of jail to the county).

Decision makers often leverage personal experience to make decisions in these contexts, without
considering data, even if massive amounts of it exist. Machine learning models could be of immense
help in such scenarios – but these models would need to consider all three aspects discussed above:
predictions of counterfactuals, costs of gathering information, and costs of treatments. Further,
these models must be interpretable in order to create any reasonable chance of a human decision
maker actually using them. In this work, we address the problem of learning such cost-effective,
interpretable treatment regimes from observational data.

Prior research addresses various aspects of the problem at hand in isolation. For instance, there
exists a large body of literature on estimating treatment effects [5, 13, 4], recommending optimal
treatments [1, 15, 6], and learning intelligible models for prediction [10, 8, 11, 2]. However, an
effective solution for the problem at hand should ideally incorporate all of the aforementioned as-
pects. Furthermore, existing solutions for learning treatment regimes neither account for the costs
associated with gathering the required information, nor the treatment costs. The goal of this work is
to propose a framework which jointly addresses all of the aforementioned aspects.

We address the problem at hand by formulating it as a task of learning a decision list that maps
subject characteristics to treatments such that it: 1) maximizes the expectation of a pre-specified
outcome when used to assign treatments to a population of interest 2) minimizes costs associated
with assessing subjects’ conditions and 3) minimizes costs associated with the treatments them-
selves. We propose a novel objective function to learn a decision list optimized with respect to the
criteria listed above. We show that the proposed objective is NP-hard. We then optimize this ob-
jective by modeling it as a Markov Decision Process (MDP) and employing a variant of the Upper
Confidence Bound for Trees (UCT) strategy which leverages customized checks for pruning the
search space effectively. Our results on a real world dataset comprised of judicial bail decisions
demonstrate the effectiveness of the proposed solution.

1In this paper, we use the word treatment to represent a course of action or a choice. For instance, in the
context of bail decisions, releasing a defendant on a cash bond is one of the possible treatments.
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2 Our Framework

First, we formalize the notion of treatment regimes and discuss how to represent them as decision
lists. We then propose an objective function for constructing cost-effective treatment regimes.

Input Data and Cost Functions. Consider a dataset D = {(x1, a1, y1), (x2, a2, y2) · · ·
(xN , aN , yN )} comprised of N independent and identically distributed observations, each of
which corresponds to a subject (individual), potentially from an observational study. Let xi =[
x
(1)
i , x

(2)
i , · · ·x(p)i

]
∈ [V1,V2, · · · Vp] denote the characteristics of subject i. Vf denotes the set of

all possible values that can be assumed by a characteristic f ∈ F = {1, 2, · · · p}. Each character-
istic f ∈ F can either be a binary, categorical or real valued variable. In the bail setting, exam-
ple characteristics include defendant’s age, previous criminal records, mental health status etc., Let
ai ∈ A = {1, 2, · · ·m} and yi ∈ R denote the treatment assigned to subject i and the corresponding
outcome respectively. We assume that yi is defined such that higher values indicate better outcomes.
For example, the outcome associated with a defendant can be regarded as a score capturing the af-
termath of the judge’s decision. If a defendant is released on bail and he/she commits a new crime
when out on bail, then the corresponding outcome score will be lower than the score assigned to
a scenario where the defendant is on his/her best behavior (commits no new crimes, appears at all
further court dates) when out on bail.

It can be much more expensive to determine certain subject characteristics compared to others.
For instance, a defendant’s age can be easily retrieved from his/her records. On the other hand,
determining if he/she is mentally ill currently requires more comprehensive medical diagnosis, and
is therefore more expensive in terms of monetary costs, time and effort required both from the
defendant as well as the judicial system. We assume access to functions d : F → R, and d′ : A → R

which return the cost of determining any characteristic in F , and the cost of each treatment a ∈ A
respectively.

Treatment Regimes. A treatment regime is a function that takes as input the characteristics of any
given subject x and maps them to an appropriate treatment a ∈ A. We employ decision lists to
express treatment regimes as they tend to be intelligible. A decision list is an ordered list of rules
embedded within an if-then-else structure. A treatment regime expressed as a decision list π is a
sequence of L+ 1 rules [r1, r2, · · · , rL+1]. The last one, rL+1, is a default rule which applies to all
those subjects who do not satisfy any of the previous L rules. Each rule rj (except the default rule) is
a tuple of the form (cj , aj) where aj ∈ A, and cj represents a pattern which is a conjunction of one
or more predicates. Each predicate takes the form (f, o, v) where f ∈ F , o ∈ {=, 6=,≤,≥, <,>},
and v ∈ Vf denotes some value v that can be assumed by the characteristic f (Eg.,‘Age ≥ 40 ∧
Gender=Female”). We define an indicator function, satisfy(xi, cj), which returns a 1 if xi satisfies
cj and 0 otherwise.

The rules in π partition the dataset D into L + 1 groups: {R1,R2 · · ·RL,Rdefault}. A group Rj ,
where j ∈ {1, 2, · · ·L}, is comprised of those subjects that satisfy cj but do not satisfy any of
c1, c2, · · · cj−1. This can be formally written as:

Rj =

{
x ∈ [V1 · · · Vp] | satisfy(x, cj} ∧

j−1∧
t=1

¬ satisfy(x, ct)

}
. (1)

The treatment assigned to each subject by π is determined by the group that he/she belongs to. More
formally,

π(xi) =

L∑
l=1

al 1(xi ∈ Rl) + adefault 1(xi ∈ Rdefault) (2)

Similarly, the cost incurred when we assign a treatment to the subject i (treatment cost) according
to the regime π is given by:

φ(xi) = d′(π(xi)) (3)
where the function d′ (defined previously) takes as input a treatment a ∈ A and returns its cost.

We can also define the cost incurred in assessing the condition of a subject i (assessment cost) as per
the regime π. Note that a subject i belongs to the groupRj if and only if the subject does not satisfy
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the conditions c1 · · · cj−1, but satisfies the condition cj (Refer to Eqn. 1). This implies that the
assessment cost incurred for this subject i is the sum of the costs of all the characteristics that appear
in c1 · · · cj . IfNl denotes the set of all the characteristics that appear in c1 · · · cl, the assessment cost
of the subject i as per the regime π can be written as:

ψ(xi) =
L∑
l=1

[
1(xi ∈ Rl)×

(∑
e∈Nl

d(e)

)]
. (4)

Objective Function. We first formalize the notions of expected outcome, assessment, and treatment
costs of a treatment regime π with respect to the dataset D.

The quality of the regime π is partly determined by the expected outcome when all the subjects inD
are assigned treatments according to π. The higher the value of such an expected outcome, the better
the quality of the regime π. There is, however, one caveat to computing the value of this expected
outcome – we only observe the outcome yi resulting from assigning xi to ai in the data D, and not
any of the counterfactuals. To address this problem, we compute the expected outcome of a given
regime π using doubly robust estimation [12]:

g1(π) =
1

N

N∑
i=1

∑
a∈A

[
1(ai = a)

ω̂(xi, a)
{yi − ŷ(xi, a)}+ ŷ(xi, a)

]
1(π(xi) = a) (5)

ω̂(xi, a) denotes the probability that the subject i with characteristics xi is assigned to treatment a
in the data D. ω̂ represents the propensity score model. In practice, we fit a multinomial logistic
regression model on D to learn this function. Our framework does not impose any constraints on
the functional form of ω̂. ŷ corresponds to the outcome regression model and is learned in our
experiments by fitting a linear regression model on D prior to optimizing for the treatment regimes.

The assessment cost of a subject i w.r.t. the regime π is given in Eqn. 4. The expected assessment
cost across the entire population can be computed as:

g2(π) =
1

N

N∑
i=1

ψ(xi). (6)

The treatment cost for a subject i who is assigned treatment using regime π is given in Eqn. 3. The
expected treatment cost across the entire population can be computed as:

g3(π) =
1

N

N∑
i=1

φ(xi). (7)

The smaller the expected assessment and treatment costs of a regime, the more desirable it is in
practice.

Given the observational data D and a set of all possible combinations of candidate rules C(L), our
objective is to maximize g1(π), and minimize g2(π) and g3(π) :

argmax
π∈C(L)×A

λ1g1(π)− λ2g2(π)− λ3g3(π). (8)

The λ’s in Eqn. 8 are non-negative weights that scale the relative influence of terms in the objective.
The above objective function is NP-Hard (refer Appendix for more details [9]).

2.1 Optimizing the Objective

We optimize our objective by modeling it as as a Markov Decision Process (MDP) and then employ-
ing Upper Confidence Bound on Trees (UCT) algorithm to find a treatment regime which maximizes
Eqn. 8. We also propose and leverage customized checks for guiding the exploration of the UCT
algorithm and pruning the search space effectively.
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Markov Decision Process Formulation Our goal is to find a sequence of rules which maximize
the objective function in Eqn. 8. To this end, we formulate a fully observable MDP such that the
optimal policy of the posited formulation provides a solution to our objective function.

A fully observable MDP is characterized by a tuple (S,A,T,R) where S denotes the set of all
possible states, A denotes the set of all possible actions, T and R represent the transition and reward
functions respectively. Below we define each of these in the context of our problem. State Space.
Conceptually, each state in our state space captures the effect of some partial or fully constructed
decision list. To illustrate, let us consider a partial decision list with just one rule “if Age ≥ 40
∧ Gender = Female, then T1”. This partial list induces that: (i) all those subjects that satisfy the
condition of the rule are assigned treatment T1, and (ii) Age and gender characteristics will be
required in determining treatments for all the subjects in the population.

To capture such information, we represent a state s̃ ∈ S by a list of tuples
[(τ 1(s̃), σ1(s̃)), · · · (τN (s̃), σN (s̃))] where each tuple corresponds to a subject in D. τ i(s̃) is a
binary vector of length p defined such that τ (j)i (s̃) = 1 if the characteristic j will be required for
determining subject i’s treatment, and 0 otherwise. Further, σi(s̃) captures the treatment assigned to
subject i. If no treatment has been assigned to i, then σi(s̃) = 0.

Note that we have a single start state s̃0 which corresponds to an empty decision list. τ i(s̃0) is a
vector of 0s, and σi(s̃0) = 0 for all i in D indicating that no treatments have been assigned to any
subject, and no characteristics were deemed as requirements for assigning treatments. Furthermore,
a state s̃ is regarded as a terminal state if for all i, σi(s̃) is non-zero indicating that treatments have
been assigned to all the subjects.

Actions. Each action can take one of the following forms: 1) a rule r ∈ L, which is a tuple of the
form (pattern, treatment). Eg., (Age≥40 ∧ Gender=Female, T1). This specifies that subjects who
obey conditions in the pattern are prescribed the treatment. Such action leads to a non-terminal state.
2) a treatment a ∈ A, which corresponds to the default rule, thus this action leads to a terminal state.

Transition and Reward Functions. We have a deterministic transition function which ensures that
taking an action ã = (c̃, t̃) from state s̃ will always lead to the same state s̃′. Let U denote the set of
all those subjects i for which treatments have already been assigned to be in state s̃ i.e., σi(s̃) 6= 0
and let U c denote the set of all those subjects who have not been assigned treatment in the state s̃.
Let U ′ denote the set of all those subjects i which do not belong to the set U and which satisfy the
condition c̃ of action ã. Let Q denote the set of all those characteristics in F which are present in
the condition c̃ of action ã. If action ã corresponds to a default rule, then Q = ∅ and U ′ = U c. With
this notation in place, the new state s̃′ can be characterized as follows: 1) τ (j)i (s̃′) = τ

(j)
i (s̃) and

σi(s̃
′) = σi(s̃) for all i ∈ U , j ∈ F ; 2) τ (j)i (s̃′) = 1 for all i ∈ U c, j ∈ Q; 3) σi(s̃′) = t̃ for all

i ∈ U ′.
Similarly, the immediate reward obtained when we reach s̃′ by taking ã = (c̃, t̃) from the state s̃ can
be written as:

λ1
N

∑
i∈U ′

o(i, t̃)− λ2
N

∑
i∈Uc,j∈Q

d(j)− λ3
N

∑
i∈U ′

d′(t̃)

where o is defined in Eqn. 5, d and d′ are cost functions for characteristics and treatments respec-
tively.

UCT with Customized Pruning The basic idea behind the Upper Confidence Bound on Trees
(UCT) [7] algorithm is to iteratively construct a search tree for some pre-determined number of
iterations. At the end of this procedure, the best performing policy or sequence of actions is returned
as the output. Each node in the search tree corresponds to a state in the MDP state space and the links
in the tree correspond to the actions. UCT employs the UCB-1 metric [3] for navigating through the
search space.

We employ a UCT-based algorithm for finding the optimal policy of our MDP formulation, though
we leverage customized checks to further guide the exploration process and prune the search space.
Recall that each non-terminal state in our state space corresponds to a partial decision list. We exploit
the fact that we can upper-bound the value of the objective for any given partial decision list. The
upper bound on the objective for any given non-terminal state s̃ can be computed by approximating
the reward as follows: 1) all the subjects who have not been assigned treatments will get the best
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Bail Dataset

# of Data Points 86152

Characteristics & Costs age, gender, previous offenses, prior arrests,
current charge, SSN (cost = 1)

marital status, kids, owns house, pays rent
addresses in past years (cost = 2)

mental illness, drug tests (cost = 6)

Treatments & Costs release on personal recognizance (cost = 20)
release on conditions/bond (cost = 40)

Outcomes & Scores no risk (score = 100), failure to appear (score = 66)
non-violent crime (score = 33)

violent crime (score = 0)

Table 1: Summary of datasets.

possible treatments without incurring any treatment cost 2) no additional assessments are required
by any subject (and hence no additional assessment costs levied) in the population. The upper bound
on the incremental reward is thus:

upper bound(U c) = λ1
1

N

∑
i∈Uc

max
t
o(i, t).

During the execution of UCT procedure, whenever there is a choice to be made about which action
needs to be taken, we employ checks based on the upper bound of the objective value of the resulting
state. Consider a scenario in which the UCT procedure is currently in state s̃ and needs to choose
an action. For each possible action ã (that does not correspond to a default rule2) from state s̃,
we determine the upper bound on the objective value of the resulting state s̃′. If this value is less
than either the highest value encountered previously for a complete rule list, or the objective value
corresponding to the best default action from the state s̃, then we block the action ã from the state s̃.
This state is provably suboptimal.

3 Experimental Evaluation

Here, we discuss the detailed experimental evaluation of our framework. First we analyze the out-
comes obtained and costs incurred when recommending treatments using our approach. Then, we
qualitatively analyze the treatment regime produced by our framework.

If Gender=F and Current-Charge =Minor Prev-Offense=None then RP

Else if Prev-Offense=Yes and Prior-Arrest =Yes then RC

Else if Current-Charge =Misdemeanor and Age≤ 30 then RC

Else if Age≥ 50 and Prior-Arrest=No, then RP

Else if Marital-Status=Single and Pays-Rent =No and Current-Charge =Misd. then RC

Else if Addresses-Past-Yr≥ 5 then RC

Else RP

Figure 1: Treatment regime for bail data; RP refers to milder form of treatment: release on personal
recognizance, and RC is release on conditions/bond which is comparatively harsher.

Dataset. Our dataset consists of information pertaining to bail decisions of about 86K defendants
(see Table 1). It captures information about various defendant characteristics such as demographic
attributes, past criminal history (cost = 1), personal (cost = 2) and health related information (cost
= 6) for each of the 86K defendants. Further, the decisions made by judges in each of these cases:
release on personal recognizance (cost = 20) / release on conditions/bond (cost = 40), and the corre-
sponding outcomes (e.g., if a defendant committed another crime when out on bail) are also avail-
able. The characteristics that were harder to obtain were assigned higher costs compared to the ones

2We can compute exact values of objective function if the action is a default rule because the corresponding
decision list is fully constructed.
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Avg. Avg. Avg. Avg. # of List
Outcome Assess Cost Treat Cost Characs. Len

CITR 79.2 8.88 31.09 6.38 7
IPTL 77.6 14.53 35.23 8.57 9
MCA 73.4 19.03 35.48 12.03 -

OWL (Gaussian) 72.9 28 35.18 13 -
OWL (Linear) 71.3 28 34.23 13 -

Human 69.37 - 33.39 - -

Table 2: Results for Treatment Regimes. Our approach: CITR; Baselines: IPTL, MCA, OWL;
Human refers to the setting where judges assigned treatments (or made decisions).

that were readily available. Similarly, the treatment that placed a higher burden on the defendant
and/or the system (release on conditions/bond) was assigned a higher cost. When assigning scores
to outcomes, undesirable scenarios (e.g., violent crime when released on bail) received lower scores.

Baselines. We compared our framework to the following state-of-the-art treatment recommenda-
tion approaches: 1) Outcome Weighted Learning (OWL) [17] 2) Modified Covariate Approach
(MCA) [14] 3) Interpretable and Parsimonious Treatment Regime Learning (IPTL) [16]. While
none of these approaches explicitly account for treatment costs or costs required for gathering the
subject characteristics, MCA and IPTL minimize the number of characteristics/covariates required
for deciding the treatment of any given subject. OWL, on the other hand, often uses all the charac-
teristics available in the data when assigning treatments.

Quantitative Analysis. We analyzed the performance of our approach CITR (Cost-effective, In-
terpretable Treatment Regimes) with respect to various metrics such as: average outcome obtained
(Avg. Outcome), average assessment and treatment costs (Avg. Assess Cost, Avg. Treat Cost), aver-
age no. of characteristics (Avg. # of Characs.) used to determine treatment of any given defendant,
and number of rules in the rule list (List Len). These results are shown in Table 2. It can be seen
that the treatment regimes produced by our approach results in better average outcomes with lower
costs. It is also interesting that our approach produces more concise lists with fewer rules compared
to the baselines. While the treatment costs of all the baselines are similar, there is some variation in
the average assessment costs and the outcomes. IPTL turns out to be the best performing baseline in
terms of the average outcome, average assessment costs, and average number of characteristics. The
last line of Table 2 shows the average outcomes and the average treatment costs computed empiri-
cally on the observational data. These statistics (in the last line) represent the outcomes and costs
corresponding to the decisions made by human judges. It is interesting to note that the regimes
learned by algorithmic approaches perform better than human experts.

Qualitative Analysis. The treatment regime produced by our approach on the bail dataset is shown
in Figure 1. The constructed regime is able to achieve good outcomes without even using the most
expensive characteristics such as mental illness tests and drug tests. Personal information character-
istics, which are slightly more expensive than defendant demographics and prior criminal history,
appear only towards the end of the list and these checks apply only to 21.23% of the population. It is
interesting that the regime uses the defendant’s criminal history as well as personal and demographic
information to make recommendations. For instance, females with minor current charges (such as
driving offenses) and no prior criminal records are typically released on bail without conditions such
as bonds or checking in with the police. On the other hand, defendants who have committed crimes
earlier are only granted conditional bail.

4 Conclusions

In this work, we proposed a framework for learning cost-effective, interpretable treatment regimes
from observational data. To the best of our knowledge, this is the first solution to the problem
at hand that addresses all of the following aspects: 1) maximizing the outcomes 2) minimizing
treatment costs, and costs associated with gathering information required to determine the treatment
3) expressing regimes using an interpretable model. We modeled the problem of learning a treatment
regime as a MDP and employed a variant of UCT which prunes the search space using customized
checks. We demonstrated the effectiveness of our framework on real world data comprising of bail
decisions.
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